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EXERCISES

5.1 [101 Repeat Example 5.3, but using the Jacobian written in frame {0}. Are the
results the same as those of Example 5.3?

5.2 [25] Find the Jacobian of the manipulator with three degrees of freedom from
Exercise 3 of Chapter 3. Write it in terms of a frame {4} located at the tip of the
hand and having the same orientation as frame {3}.

5.3 [35] Find the Jacobian of the manipulator with three degrees of freedom from
Exercise 3 of Chapter 3. Write it in terms of a frame {4} located at the tip of the
hand and having the same orientation as frame {3}. Derive the Jacobian in three
different ways: velocity propagation from base to tip, static force propagation
from tip to base, and by direct differentiation of the kinematic equations.

5.4 [8] Prove that singularities in the force domain exist at the same configurations as
singularities in the position domain.

5.5 [39] Calculate the Jacobian of the PUMA 560 in frame {6}.
5.6 [47] Is it true that any mechanism with three revolute joints and nonzero link

lengths must have a locus of singular points interior to its workspace?
5.7 [7] Sketch a figure of a mechanism with three degrees of freedom whose linear

velocity Jacobian is the 3 x 3 identity matrix over all configurations of the
manipulator. Describe the kinematics in a sentence or two.

5.8 [18] General mechanisms sometimes have certain configurations, called "isotropic
points," where the columns of the Jacobian become orthogonal and of equal
magnitude [7]. For the two-link manipulator of Example 5.3, find out if any
isotropic points exist. Hint: Is there a requirement on 11 and 12?

5.9 [50] Find the conditions necessary for isotropic points to exist in a general
manipulator with six degrees of freedom. (See Exercise 5.8.)

5.10 [7] For the two-link manipulator of Example 5.2, give the transformation that
would map joint torques into a 2 x 1 force vector, 3F, at the hand.

5.11 [14] Given

0.866 —0.500 0.000 10.0
A 0.500 0.866 0.000 0.0
BT = 0.000 0.000 1.000 5.0

0 0 0 1
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if the velocity vector at the origin of {A} is

0.0
2.0

A — —3.0

1.414
1.414
0.0

find the 6 x 1 velocity vector with reference point the origin of {B}.
5.12 [15] For the three-link manipulator of Exercise 3.3, give a set of joint angles for

which the manipulator is at a workspace-boundary singularity and another set of
angles for which the manipulator is at a workspace-interior singularity.

5.13 [9] A certain two-link manipulator has the following Jacobian:

°J(O) = [
—11s1 — 12s12 212

[ l1c1 + 12c12 12c12

Ignoring gravity, what are the joint torques required in order that the manipulator
will apply a static force vector 0F = lOX0?

5.14 [18] If the link parameter 03 of the PUMA 560 were zero, a workspace-boundary
singularity would occur when 03 = —90.0°. Give an expression for the value of 03
where the singularity occurs, and show that, if 03 were zero, the result would be
03 = —90.0°. Hint: In this configuration, a straight line passes through joint axes
2 and 3 and the point where axes 4, 5, and 6 intersect.

5.15 [24] Give the 3 x 3 Jacobian that calculates linear velocity of the tool tip from
the three joint rates for the manipulator of Example 3.4 in Chapter 3. Give the
Jacobian in frame {0}.

5.16 [20] A 3R manipulator has kinematics that correspond exactly to the set of
Z—Y--Z Euler angles (i.e., the forward kinematics are given by (2.72) with a = 01,

= and y = 03). Give the Jacobian relating joint velocities to the angular
velocity of the final link.

5.17 [31] Imagine that, for a general 6-DOF robot, we have available and
for all i—that is, we know the values for the unit Z vectors of each link frame in
terms of the base frame and we know the locations of the origins of all link frames
in terms of the base frame. Let us also say that we are interested in the velocity of
the tool point (fixed relative to link n) and that we know also. Now, for a
revolute joint, the velocity of the tool tip due to the velocity of joint i is given by

= 0Z1 x — °Piorg) (5.110)

and the angular velocity of link ii due to the velocity of this joint is given by

= 0Z. (5.111)

The total linear and angular velocity of the tool is given by the sum of the
and 0w respectively. Give equations analogous to (5.110) and (5.111) for the case
of joint i prismatic, and write the 6 x 6 Jacobian matrix of an arbitrary 6-DOF
manipulator in terms of the Z, and

5.18 [18] The kinematics of a 3R robot are given by

c1c23 —c1s23 S1 11c1 + l2c1c2

0T — S1C23 —s1s23 —C1 11s1 + 12s1c2

— s23 c23 0 12s2

0 0 0 1
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Find °J(e), which, when multiplied by the joint velocity vector, gives the linear
velocity of the origin of frame {3} relative to frame {0}.

5.19 [15] The position of the origin of link 2 for an RP manipulator is given by

a1c1 — d9s1

a1s1+d2c1
0

Give the 2 x 2 Jacobian that relates the two joint rates to the linear velocity of
the origin of frame {2]. Give a value of 0 where the device is at a singularity.

5.20 [20] Explain what might be meant by the statement: "An n-DOF manipulator at a
singularity can be treated as a redundant manipulator in a space of dimensionality
12 — 1.''

PROGRAMMING EXERCISE (PART 5)

1. Two frames, {A} and {B}, are not moving relative to one another—that is, T is
constant. In the planar case, we define the velocity of frame {A} as

A
XA

Av_
A

Write a routine that, given and AvA, computes BVB. Hint: This is the planar
analog of (5.100). Use a procedure heading something like (or equivalent C):

Procedure Veltrans (VAR brela: frame; VAR vrela, vrelb: vec3);

where "vrela" is the velocity relative to frame {A}, or AVA, and "vrelb" is the

output of the routine (the velocity relative to frame (B)), or B
2. Determine the 3 x 3 Jacobian of the three-link planar manipulator (from Exam-

ple 3.3). In order to derive the Jacobian, you should use velocity-propagation
analysis (as in Example 5.2) or static-force analysis (as in Example 5.6). Hand in
your work showing how you derived the Jacobian.
Write a routine to compute the Jacobian in frame {3}—that is, 3J(0)—as a

function of the joint angles. Note that frame (3) is the standard link frame with
origin on the axis of joint 3. Use a procedure heading something like (or equivalent
C):

Procedure Jacobian (VAR theta: vec3; Var Jac: mat33);

The manipulator data are 12 = 12 0.5 meters.
3. A tool frame and a station frame are defined as follows by the user for a certain

task (units are meters and degrees):

= [x y 0] = [0.1 0.2 30.0],

= [xyO]=[0.00.00.0].

At a certain instant, the tool tip is at the position

= [x y 0] = [0.6 —0.3 45.0].
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At the same instant, the joint rates (in deg/sec) are measured to be

e = 83] = [20.0 10.0 12.0].

Calculate the linear and angular velocity of the tool tip relative to its own frame,
that is, TVT. If there is more than one possible answer, calculate all possible
answers.

MATLAB EXERCISE 5

This exercise focuses on the Jacobian matrix and determinant, simulated resolved-rate
control, and inverse statics for the planar 3-DOF, 3R robot. (See Figures 3.6 and 3.7; the
DH parameters are given in Figure 3.8.)

The resolved-rate control method [9] is based on the manipulator velocity equation
kX = kje where kj is the Jacobian matrix, e is the vector of relative joint rates, kX is
the vector of commanded Cartesian velocities (both translational and rotational), and k
is the frame of expression for the Jacobian matrix and Cartesian velocities. This figure
shows a block diagram for simulating the resolved-rate control algorithm:

As is seen in the figure, the resolved-rate algorithm calculates the required
commanded joint rates to provide the commanded Cartesian velocities Xc; this
diagram must be calculated at every simulated time step. The Jacobian matrix changes
with configuration For simulation purposes, assume that the commandedjoint angles

are always identical to the actual joint angles achieved, 0A (a result rarely true in the
real world). For the planar 3-DOF, 3R robot assigned, the velocity equations kX = kJ®
for k = 0 are

I 1
—L1s1 — L2s12 — L3s193 —L2s12 — L3s123 —L3s123

O = 0 L1c1 + L2c17 + L3c123 L2c12 + L3c123 L3c123

IZJ 1 1 1 93

where s123 = sin(91 + 02 + 03), c123 = cos(01 + 09 + 03), and so on. Note that 0X gives
the Cartesian velocities of the origin of the hand frame (at the center of the grippers in
Figure 3.6) with respect to the origin of the base frame {0}, expressed in {0} coordinates.

Now, most industrial robots caimot command directly, so we must first integrate
these commanded relative joint rates to commanded joint angles which can be
commanded to the robot at every time step. In practice, the simplest possible integration
scheme works well, assuming a small control time step 0new = 0oId + In your
MATLAB resolved-rate simulation, assume that the commanded can be achieved
perfectly by the virtual robot. (Chapters 6 and 9 present dynamics and control material
for which we do not have to make this simplifying assumption.) Be sure to update the

Resolved-Rate-Algorithm Block Diagram
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Jacobian matrix with the new configuration °new before completing the resolved-rate
calculations for the next time step.

Develop a MATLAB program to calculate the Jacobian matrix and to simulate
resolved-rate control for the planar 3R robot. Given the robot lengths L1 = 4, = 3,
and L3 = 2 (in); the initial joint angles 0 = 93}T = {10° 200 300}T and the
constant commanded Cartesian rates = {i = {0.2 —0.3 _0•21T (mis,
mis, rad/s), simulate for exactly 5 sec, using time steps of exactly dt = 0.1 sec. In
the same program loop, calculate the inverse-statics problem—that is, calculate the
joint torques T = {r1 r2 r3}T (Nm), given the constant commanded Cartesian wrench
°{W} {f f ,1z}T = {1 2 31T (N, N, Nm). Also, in the same loop, animate the robot
to the screen during each time step, so that you can watch the simulated motion to verify
that it is correct.

a) For the specific numbers assigned, present five plots (each set on a separate graph,
please):

1. the three active joint rates = O2 03}T vs. time;

2. the three active joint angles 0 = {0i 02
031T vs. time;

3. the three Cartesian components of X = {x y (rad is fine for so
that it will fit) vs. time;

4. the Jacobian matrix determinant IJI vs. time—comment on nearness to
singularities during the simulated resolved-rate motion;

5. the three active joint torques T = r3}T vs. time.

Carefully label (by hand is fine!) each component on each plot; also, label the axes
with names and units.

b) Check your Jacobian matrix results for the initial and final joint-angle sets by
means of the Corke MATLAB Robotics Toolbox. Try function jacobOQ. Caution:
The toolbox Jacobian functions are for motion of {3} with respect to {0}, not for {H}
with respect to {0} as in the problem assignment. The preceding function gives the
Jacobian result in {0} coordinates; jacobn() would give results in {3} coordinates.


